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Abstract— In this paper, we explore the possibility of using air
traffic complexity metrics to accelerate the Interacting Particle
System (IPS) method for collision risk estimation.

Collision risk estimation is an essential task to assess the
performance and impact of, e.g., possible modifications of the
current air traffic management system or new operational
concepts. The standard Monte Carlo approach to probability
estimation requires a number of simulations that scales as
the inverse of the probability to be estimated. This makes it
impracticable for estimating the probability of a rare event such
as a collision, and calls for ad-hoc solutions. In the IPS method,
the collision risk is estimated as the product of the conditional
probabilities of an increasing sequence of conditionally not-so-
rare events, where aircraft get at progressively smaller distances
one from the other. Additional computational saving can be
obtained by adopting importance sampling techniques where
initial aircraft configurations that are more prone to lead to a
collision are favored. The idea that we pursue in this paper is
to select those configurations by using some complexity metric.
In particular, we propose to combine IPS with a probabilistic
complexity metric that explicitly accounts for the uncertainty
affecting the aircraft motion. Preliminary results obtained by
applying this integrated approach to a free flight scenario are
presented in the paper.

I. INTRODUCTION

The availability of new technologies that enable the

aircraft to broadcast and receive information about their

own position and velocity and the position and velocity of

surrounding aircraft has stimulated the rethinking of the cur-

rent centralized and ground-based Air Traffic Management

(ATM) system. In prospective ATM systems, aircrews will be

allowed to choose their preferential trajectory while taking

the responsibility of keeping at a safe distance from the other

aircraft. This conceptual idea is known as free flight [1]

and involves significant changes to the current ATM system:

centralized control becomes distributed, responsibilities are

transferred from ground to air, fixed air traffic routes are

removed, and appropriate new technologies are brought in

to assist aircrews in performing their navigation and self

separation tasks.

The free flight concept idea has motivated the study of dif-

ferent operational concepts and implementation choices. One

of the key issues of free flight design is safety verification,

in particular for high traffic densities. For en-route traffic,

This work was supported by the European Commission under the iFly
project.

M. Prandini is with Dipartimento di Elettronica e Informazione, Politec-
nico di Milano, Italy - prandini@elet.polimi.it

H.A.P. Blom is with National Aerospace Laboratory NLR and with Delft
Technical University, The Netherlands - blom@nlr.nl

G.J. (Bert) Bakker is with National Aerospace Laboratory NLR, The
Netherlands - bakker@nlr.nl

the International Civil Aviation Organization (ICAO) has

established thresholds on the acceptable probability of a mid-

air collision. Hence, the en-route free flight safety verification

problem consists of estimating the collision probability of

free flight operations, and comparing this estimate with the

ICAO established thresholds [2].

The problem of estimating the collision probability can

be reformulated as a reachability analysis problem for the

system modeling the air traffic: a collision occurs when the

state of the overall system reaches a region of the state

space where the distance of at least two aircraft is smaller

than the aircraft size. The numerical approach to reachability

analysis in [18] could be applied, in principle, to collision

probability estimation in free flight operations. The problem

is that the need of a fine gridding of the space and the

prospective high density scenarios make the grid points blow

up to a practically unmanageable large number. A seemingly

simple approach toward the estimation of mid-air collision

probability is to run many Monte Carlo (MC) simulations

with a free flight model and count the fraction of runs for

which a collision occurs. The advantage of a MC simulation

approach is that it is not sensitive to the dimension of the

state space and does not require specific assumptions on the

system under consideration. A key problem is that in order

to obtain accurate estimates of rare event probabilities, say

about 10−9, the outlined MC simulation approach requires

to run 1011 simulation or more. Taking into account that an

appropriate model for free flight operations is quite complex,

this would require an impractically huge simulation time.

More sophisticated approaches for probabilistic risk analysis

adopted in safety critical industries [11] appear not suitable

for free flight, since they cannot be applied to the class

of Generalized Stochastic Hybrid Systems (GSHS) that are

used for safety modeling of air traffic operations [17]. GSHS

are continuous-time stochastic hybrid systems, whose state

has two components: a continuous state component and

a discrete state component (mode). The continuous state

evolves according to a stochastic differential equation whose

vector field and drift factor depend on both the hybrid state

components. Switching from one mode to another is either

governed by a probability law (spontaneous transitions) or

occurs when the continuous state hits a pre-specified bound-

ary (forced transitions). Whenever a switching occurs, the

hybrid state is reset to a new state according to a probability

measure which depends itself on the past hybrid state.

In [5], [6], [15] a sequential MC simulation approach for

estimating small reachability probabilities has been devel-

oped and its convergence properties has been characterized.
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The idea behind this approach is to express the small

probability of interest as the product of a certain number

of larger probabilities, which can be efficiently estimated

by the MC approach. This can be achieved by introducing

nested sets of intermediate states that are visited one set after

the other before reaching the final set of states of interest.

The reachability probability to be estimated is then given by

the product of the conditional probabilities of reaching a set

of intermediate states given that the previous one has been

reached. Each conditional probability is estimated by simu-

lating in parallel several copies of the system, i.e., each copy

is considered as a particle following the trajectory generated

through the system dynamics. To ensure unbiased estimation,

the simulated process must have the strong Markov property.

In [3], [4], the sequential MC simulation approach was

extended to mid-air collision risk estimation in free flight by

developing an Interacting Particle System (IPS) algorithm

where the sequential MC approach is applied to a Stochasti-

cally and Dynamically Coloured Petri Net (SDCPN) model

of a free flight operation. The adopted Petri net formalism

is quite powerful for developing a compositional model of

a complex multi-agent system such as that involved in free

flight operations. More importantly, SDCPN has been shown

in [9] to be equivalent to GSHS, which satisfies the strong

Markov property needed for the sequential MC simulation

approach, [10]. The results of the IPS algorithm can provide

some valuable feedback to the operational concept designers

as discussed in [4]. The aspect of interest here is that,

although the sequential MC simulation approach outperforms

the standard MC approach for free flight safety verification,

it still poses very high requirements on the availability of

dynamic computer memory and simulation time.

In this paper, we explore the possibility of improving the

performance of the IPS algorithm for collision risk estimation

by selecting among the initial aircraft configurations those

that are more prone to lead to a collision. This idea is inspired

by the variance reduction technique known in the MC

simulation literature as importance sampling. In importance

sampling, samples are extracted according to a “biased”

distribution that is higher in those regions making the most

important contribution to the quantity to be estimated. The

outcome of the simulations is then re-scaled to get an

unbiased estimate.

The identification of the configurations that are more

prone to lead to a collision is based on the evaluation

of the air traffic complexity: the larger is the complexity,

the more difficult is to guarantee safety. The probabilistic

complexity measure recently introduced in [20]is chosen

to this purpose. The results of a preliminary study on the

proposed integrated approach to collision risk estimation

are presented. Directions of further investigation are also

discussed.

II. IPS-BASED COLLISION RISK ESTIMATION

This section is based on [4, Section 10.2].

We assume that air traffic operations are represented by a

stochastic hybrid process {xt, qt} which satisfies the strong

Markov property.

For an N -aircraft free flight traffic scenario the stochastic

hybrid process {xt, qt} consists of Euclidean valued compo-

nents xt:=(x0
t , x

1
t , . . . , x

N
t ) and discrete valued components

qt := (q0
t , q1

t , . . . , qN
t ), where xi

t assumes values from R
ni ,

and qi
t assumes values from a finite set Mi. Physically,

{xi
t, q

i
t}, i = 1, . . . , N , is the hybrid state process related

to the i-th aircraft, and {x0
t , q

0
t } is a hybrid state process of

all non-aircraft components. The process {xt, qt} is R
n×M -

valued with n =
∑N

i=0
ni and M =

⊗N

i=0
Mi.

In order to model collisions between aircraft, we introduce

mappings from the Euclidean valued process {xt} into the

relative position and velocity between two aircraft (i, j). Rel-

ative horizontal position and velocity are obtained through

the mappings yij(xt) and vij(xt), respectively. The relative

vertical position is obtained through zij(xt), and the relative

vertical rate of climb through rij(xt).
A collision between aircraft (i, j) means that the process

{yij(xt), z
ij(xt)} hits the boundary of an area where the

distance between aircraft i and j is smaller than their physical

size. For simplicity, we approximate the volume of an aircraft

by a cylinder whose orientation does not change in time.

Then, under the assumption that all aircraft have the same

size and their length is equal to their width, aircraft (i, j)
have zero separation if xt ∈ Dij = {x ∈ R

n : |yij(x)| ≤
l and |zij(x)| ≤ h}, i 6= j, where l and h are the length and

height of the aircraft. If xt hits Dij at time τ ij , then we say

that a collision event between aircraft (i, j) occurs at τ ij ,

i.e., τ ij = inf{t > 0 : xt ∈ Dij}, i 6= j. The first moment

τ i of collision of aircraft i with any other aircraft can then be

expressed as τ i = infj 6=i{τ
ij} = inf{t > 0 : xt ∈ Di}, with

Di ∆
= ∪j 6=iD

ij . From τ i on, we can assume that {xi
t, q

i
t} stop

evolving.

An unbiased estimation procedure of the risk would be to

run many simulations over a period of length T and count

all cases in which the realization of τ i is smaller than T .

An estimator for the collision risk of aircraft i per unit T of

time then is the fraction of simulations for which τ i < T .

A. Risk factorization using multiple conflict levels

Prior to a collision of aircraft i with aircraft j, a sequence

of conflicts ranging from long term to short term always

occurs. In order to incorporate this explicitly in the MC

simulation, we formalize this sequence of conflict levels

through a sequence of closed subsets of R
n: Dij = Dij

m ⊂
Dij

m−1 ⊂ . . . ⊂ Dij
1 with for k = 1, . . . , m:

Dij
k = {x ∈ R

n : |yij(x) + ∆vij(x)| ≤ dk and

|zij(x) + ∆rij(x)| ≤ hk, for some ∆ ∈ [0, ∆k]},

with dk, hk and ∆k the parameters of the conflict definition

at level k satisfying dk+1 ≤ dk, hk+1 ≤ hk and ∆k+1 ≤ ∆k,

and dm = l, hm = s and ∆m = 0. If xt hits Dij
k at time τ ij

k ,

then we say the first level k conflict event between aircraft

(i, j) occurs at τ ij
k , i.e., τ ij

k = inf{t > 0 : xt ∈ Dij
k }.

Similarly as we did for the collision situation, we set

Di
k

∆
= ∪j 6=iD

ij
k and define the first moment τ i

k that aircraft
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i reaches conflict level k with any of the other aircraft as

τ i
k = infj 6=i{τ

ij
k } = inf{t > 0 : xt ∈ Di

k}.

Introducing the {0, 1}-valued random variables {χi
k, k =

0, 1, . . . , m}

χi
k =

{

1, if τ i
k < T or k = 0

0, otherwise,

then, the probability of collision of aircraft i with any of the

other aircraft can be expressed as a product of conditional

probabilities of reaching the next conflict level given that the

current conflict level has been reached:

P
(

τ i
m < T

)

= E[χi
m] = E

[

m
∏

k=1

χi
k

]

=

m
∏

k=1

γ i
k , (1)

where γ i
k := P

(

τ i
k < T | τ i

k−1 < T
)

= E
[

χi
k |χ

i
k−1 = 1

]

.

With this, the problem can be seen as that of estimating the

conditional probabilities γ i
k in such a way that the product of

these estimators is unbiased. Because of the multiplication of

the various individual γ i
k estimators, which depend on each

other, in general such a product may be heavily biased. The

key novelty in [5] was to show that such a product can be

evaluated in an unbiased way when {xt} is a component of

a larger stochastic process that satisfies the strong Markov

property. This approach is explained next.

B. Characterization of the risk factors

Let E′ = R
n+1×M and E ′ be the Borel σ-algebra of E′.

For any B ∈ E ′, πi
k(B) denotes the conditional probability

of ξk
∆
= (τk, xτk

, qτk
) ∈ B given χi

l = 1 for 1 ≤ l ≤ k.

Define Qi
k = (0, T ) × Di

k × M , k = 1, . . . , m. Then

the estimation of the probability for ξk to arrive at the k-th

nested Borel set Qi
k is characterized through the following

recursive set of transformations

prediction conditioning

πi
k−1(·) −→ pi

k(·) −→ πi
k(·)

↓

γ i
k

where pi
k(B) is the conditional probability of ξk ∈ B given

χi
l = 1 for 0 ≤ l ≤ k − 1.

Because {xt, qt} is a strong Markov process, {ξk} is

a Markov sequence. Hence the one step prediction of ξk

satisfies a Chapman-Kolmogorov equation:

pi
k(B) =

∫

E′

pξk | ξk−1
(B|ξ) πi

k−1(dξ), B ∈ E ′. (2)

The conditional probability of reaching the next level satisfies

γ i
k =

∫

E′

1{ξ∈Qi
k
} pi

k(dξ), (3)

and, as a consequence, the conditioning can be expressed as

πi
k(B) =

∫

B
1{ξ∈Qi

k
} pi

k(dξ)
∫

E′
1{ξ′∈Qi

k
} pi

k(dξ′)
, B ∈ E ′. (4)

With this, each of the m terms γ i
k in (1) is characterized

as a solution of a sequence of “filtering” kind of equations

(2)–(4), which differ from the standard filtering equations

because they do not present any stochastic term.

C. IPS algorithm

Based on these theoretical results, we next describe an

IPS simulation algorithm for an arbitrary hybrid state strong

Markov process modeling air traffic. The IPS algorithm

involves running m times the numerical version of the

filtering equations (2)–(4). The numerical approximations of

γ i
k , pi

k and πi
k are denoted as γ̄ i

k , p̄i
k and π̄i

k, respectively.

When simulating from Di
k−1 to Di

k, a fraction γ̄ i
k only of

the trajectories will reach Di
k within the time period (0, T ).

IPS Step 0. Initial sampling for k = 0.

• For l = 1, . . . , Np generate initial state value outside Qi
1

by independent drawings (xl
0, q

l
0) from px0,q0

(·) and set

ξl
0 = (0, xl

0, q
l
0).

• For l = 1, . . . , Np, set the initial weights: ωl
0 = 1/Np.

• Then π̄i
0 =

∑Np

l=1
ωl

0 δ{ξl
0
}.

IPS Iteration cycle: For k = 1, . . . , m perform step 1

(prediction), step 2 (assess fraction), step 3 (conditioning),

and step 4 (resampling).

IPS Step 1. Prediction of πi
k−1 −→ pi

k, based on (2);

• For l = 1, . . . , Np simulate a new path of the hybrid

state Markov process, starting at ξl
k−1 until the k-th set

Qi
k is hit or t = T (the first component of ξl

k counts

time).

• This yields new particles {ξ̂l
k, ωl

k−1}
Np

l=1
.

• p̄i
k is the empirical distribution associated with the new

cloud of particles: p̄i
k =

∑Np

l=1
ωl

k−1δξl
k
.

IPS Step 2. Assess fraction γ i
k , based on (3);

• The particles that do not reach the set Qi
k are killed, i.e.,

we set ω̂l
k = 0 if ξ̂l

k /∈ Qi
k and ω̂l

k = 0 if ω̂l
k = wl

k−1 if

ξ̂l
k ∈ Qi

k.

• Approximation: γ i
k ≈ γ̄ i

k =
∑Np

l=1
ω̂l

k. If all particles

are killed, i.e., γ̄ i
k = 0, then the algorithm stops without

P(τ i < T ) estimate.

IPS Step 3. Conditioning of pi
k −→ πi

k, based on (4);

The non-killed particles form a set Si
k, i.e., iff ξ̂l

k ∈ Qi
k,

then particle {ξ̂l
k, ω̂l

k} is stored in Si
k.

Renumbering the particles in Si
k yields a set of particles

{ξ̃l
k, ω̃l

k}
NSk

l=1
with NSk

the number of particles in Si
k.

Hence, we also have γ̄i
k =

∑NSk

l=1
ω̃l

k.

IPS Step 4. Resampling of πi
k;

Resample Np particles from Si
k as follows:

If 1

2
Np ≤ NSk

≤ Np, then copy the NSk
particles, i.e.,

ξl
k = ξ̃l

k and set ωl
k = ω̃l

k NSk
/(γ̄ i

k Np) for l = 1, . . . , NSk
;

the total weight of these particles is NSk
/Np. Subsequently,

draw Np−NSk
particles ξl

k independently from the empirical

measure π̄i
k =

∑NSk

l=1
ω̃l

k δ{ξ̃l
k
} and set ωl

k = 1/Np; the total
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weight of this is 1 − NSk
/Np.

If NSk
< 1

2
Np, then copy the NSk

particles, i.e., ξl
k = ξ̃l

k,

and set ωl
k = 1

2
ω̃l

k/γ̄ i
k for l = 1, . . . , NSk

; the total weight

of these particles is 1

2
. For the remaining weight of 1

2
,

independently draw Np−NSk
particles ξl

k from the empirical

measure π̄i
k =

∑NSk

l=1
ω̃l

k δ{ξl
k
} and set ωl

k =
1

2

Np−NSk

.

After step 4, the new set of particles is {ξl
k, ωl

k}
Np

l=1
. If

k < m then repeat steps 1, 2, 3, 4 for k := k+1. Otherwise,

stop with P(τ i < T ) ≈
∏m

k=1
γ̄ i

k .

III. AIR TRAFFIC COMPLEXITY METRIC

The concept of air traffic complexity has been originally

introduced to evaluate the difficulty perceived by the air traf-

fic controllers in handling safely a certain air traffic situation

(ATC workload). The idea is that assessing the impact on the

ATC workload of different air traffic configurations can help

to evaluate how the current ground-based ATM system is

operated, and can also provide guidelines on how to obtain

more manageable sectors by reconfiguring the airspace and

by modifying traffic patterns. In the next generation ATM

systems where the trajectory management and separation

functions will be distributed on board of the aircraft, the

availability of complexity metrics can help to predict air

traffic situations that could over burden the distributed ATM

system, and also benefit the trajectory management opera-

tions (see [19] for a detailed discussion).

Most studies on air traffic complexity have been developed

with reference to ground-based ATM. Those complexity

metrics as the dynamic density [12], [21] where workload

and air traffic measurements are incorporated within a sin-

gle aggregate indicator depend on the adopted notion and

measure of workload, and inherently incorporate various

human factors aspects. Workload-oriented metrics are sector-

based, and often show structural dependence on the sector

characteristics, which further limits their applicability to

a sector-free context such as free flight. The difficulty in

obtaining reliable workload measures has been one of the

strongest motivations for investigating complexity metrics

independent of the ATC workload, such as the input-output

approach in [13], the fractal dimension in [14], and the

intrinsic complexity measures in [7], [8]. These metrics are

actually those that appear more portable to a free flight

context.

In this paper we adopt the complexity measure introduced

in [20] for possible application to self-separation airspace.

Such a measure is based on the notion of probabilistic

occupancy of the airspace. Complexity is in fact evaluated

in terms of proximity in time and space of the aircraft

as determined by their intent and current state, while tak-

ing into account uncertainty in the aircraft future position.

Specifically, air traffic complexity at a point s in an airspace

region S ⊂ R
3 and at time t within the look-ahead time

horizon [0, T ] is evaluated as the probability that a certain

buffer zone V(s) in the airspace surrounding s will be

“congested” within [t, t + δ], with δ > 0. By defining

congestion as the simultaneous occupancy of the buffer zone

by a certain number of aircraft and evaluating this complexity

measure at all possible points in S, a complexity map can be

built. Forming the complexity maps associated with different

consecutive time intervals allows to predict when the aircraft

will enter and leave a particular zone in the airspace, and to

identify regions of the airspace S with a limited inter-aircraft

maneuverability space.

From a single aircraft perspective, the complexity experi-

enced by aircraft A along its nominal trajectory s̄A : [0, T ] →
S within the time interval [t0, tf ] can be evaluated by making

the buffer zone V(s) move along s̄A(t) and computing the

probability that some other aircraft i, i = 1, 2, . . . , N , present

in the same airspace area will enter such moving zone:

cA(t0, tf ) :=P (si(t) ∈ V(s̄A(t)) for some t ∈ [t0, tf ]

and i ∈ {1, 2, . . . , N}),

where si(t) is the predicted position of aircraft i at time

t. From an operational perspective, the so-obtained single-

aircraft complexity measure can be used by aircraft A to

evaluate the maneuverability space surrounding its nominal

trajectory and to eventually redesign it. Interestingly, if the

time window [t0, tf ] extends to the whole look-ahead time

horizon [0, T ] and the buffer zone reproduces the protection

zone surrounding the aircraft, then, cA(t0, tf ) can as well be

interpreted as the probability of aircraft A getting in conflict

with another aircraft i within time horizon [0, T ].
From a computational viewpoint, analytic – though ap-

proximate – expressions for cA(t0, tf ) are determined in [20]

with reference to the case of an ellipsoidal buffer zone

V(s) =
{

ŝ ∈ R
3 : (ŝ − s)T V (ŝ − s) ≤ 1

}

,

with V = diag
(

1

rh
2 , 1

rh
2 , 1

rv
2

)

, and piecewise linear nominal

trajectories. The model for predicting the future aircraft

position when determining these formulas is characterized

by a Gaussian prediction error whose variance grows not

only linearly with time t but also faster in the along-track

direction than in the cross-track directions.

IV. RESULTS OF A PRELIMINARY STUDY

In this section we present and discuss the results obtained

by using the complexity metric in Section III to accelerate

the IPS algorithm for collision risk estimation in free flight.

The free flight model considered is implemented in an

SDCPN simulator of the Autonomous Mediterranean Free

Flight (AMFF) [16], which was developed to study the intro-

duction of autonomous free flight operation in Mediterranean

airspace. The SDCPN model is composed of interconnected

Local Petri Nets modelling each agent involved in the process

(e.g., aircraft, pilot, navigation and surveillance equipment)

and is described in details in [4].

The IPS algorithm was applied to an hypothetical AMFF

air traffic scenario where one aircraft is flying through a

virtual infinite airspace of randomly distributed aircraft. The

traffic density was set equal to 2.5 times the density of 0.0032
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TABLE I

IPS CONFLICT LEVEL PARAMETER VALUES.

k 1 2 3 4 5 6 7 8

dk (nmi) 4.5 4.5 4.5 4.5 2.5 1.25 0.5 0.054

hk (ft) 900 900 900 900 900 500 250 131

∆k (min) 8 2.5 1.5 0 0 0 0 0

aircraft per nmi3 experienced on 23rd July 1999 in an en-

route busy area near Frankfurt. To reproduce such a density,

the airspace was divided into packed containers, each one

having a length of 40 nmi, a width of 40 nmi, and a height

of 3900 feet and containing 8 aircraft. The virtually infinite

airspace is built according to the following procedure. A set

of 8 aircraft (i = 1, 2, . . . , 8) flying at arbitrary position and

in arbitrary direction at a ground speed of about 466 nmi/h

is generated first in a container. Duplicates of this container

are then piled on top and next to each other.

The goal is to estimate the probability of collision of

aircraft i = 1 in the central container with any of the other

aircraft per unit time of flying.

The IPS conflict levels k are defined by the values for the

lateral conflict distance dk, conflict height hk, and time to

conflict ∆k in Table I. These values have been determined

through two steps. The first was to let an operational expert

make a best guess of proper parameter values. Next, during

initial simulations with the IPS some fine tuning of the

number of levels and of parameter values per level has been

done.

By running the IPS algorithm ten times over 15 minutes

the collision probability per unit time of flying can be

estimated. The number of particles per IPS simulation run

is 10000. The results obtained by applying the standard IPS

method are reported in Table II.

TABLE II

RESULTS OBTAINED THROUGH THE STANDARD IPS.

run risk estimate
1 7.28 · 10−5

2 8.83 · 10−5

3 3.54 · 10−5

4 1.03 · 10−4

5 1.22 · 10−5

6 7.21 · 10−5

7 2.66 · 10−6

8 3.94 · 10−5

9 1.41 · 10−4

10 8.03 · 10−6

mean 5.75 · 10−5

In the integrated approach to collision risk estimation,

for each particle the complexity cA(t0, tf ) experienced by

aircraft i = 1 in the central container during [t0, tf ] = [0, 15]
min is computed. The value taken by cA(t0, tf) is used to

decide whether some given airspace configuration has to be

propagated through the system dynamics in the IPS algorithm

or not. In the former case we call the configuration a se-

lected particle. To the purpose of computing the complexity

measure cA(t0, tf ), the growth rates of the variance of the

uncertainty affecting the future aircraft position were set

equal to 0.0625 nmi2/min in the along track direction, and

0.04 nmi2/min in the cross track directions. The parameters

rh and rv defining the ellipsoidal buffer region were set equal

to rh = rv = 0.05 nmi to reproduce a condition of collision.

The approximated formula in [20] obtained by making a

zero-th order expansion of the integral involved in the exact

computation of cA(t0, tf ) was used to evaluate complexity

from the perspective of aircraft i = 1 in the central container.

TABLE III

RESULTS OBTAINED WHEN THE THRESHOLD IS SET EQUAL TO 0.02.

run selected particles estimate gain
1 398 7.46 · 10−8 0.0

2 415 3.40 · 10−5 9.3

3 385 1.20 · 10−5 8.8

4 368 9.20 · 10−5 24.3

5 347 5.90 · 10−7 1.4

6 392 0.0 0.0

7 358 0.0 0.0

8 377 0.0 0.0

9 386 7.73 · 10−5 14.2

10 382 0.0 0.0

mean 381 2.16 · 10−5 5.8

overall gain: (10000/381)/(5.75 · 10−5/2.16 · 10−5) = 9.9

TABLE IV

RESULTS OBTAINED WHEN THE THRESHOLD IS SET EQUAL TO 0.025.

run selected particles estimate gain
1 146 7.46 · 10−8 0.1

2 147 3.39 · 10−5 26.1

3 142 2.45 · 10−6 4.9

4 143 9.20 · 10−5 62.6

5 133 5.90 · 10−7 3.6

6 133 0.0 0.0

7 142 0.0 0.0

8 134 0.0 0.0

9 146 7.73 · 10−5 37.6

10 143 0.0 0.0

mean 141 2.06 · 10−5 13.5

overall gain: (10000/141)/(5.75 · 10−5/2.06 · 10−5) = 25.5

TABLE V

RESULTS OBTAINED WHEN THE THRESHOLD IS SET EQUAL TO 0.03.

run selected particles estimate gain
1 65 7.46 · 10−8 0.2

2 56 3.39 · 10−5 68.5

3 54 2.45 · 10−6 12.8

4 50 9.20 · 10−5 179.1

5 44 0.0 0.0

6 57 0.0 0.0

7 46 0.0 0.0

8 55 0.0 0.0

9 72 0.0 0.0

10 48 0.0 0.0

mean 55 1.28 · 10−5 26.1

overall gain: (10000/55)/(5.75 · 10−5/1.28 · 10−5) = 40.9

In the integrated approach to collision risk estimation,

the initial particles for which cA(t0, tf ) is lower that some

threshold are discarded and the IPS algorithm is run on the
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selected particles only. The impact of the complexity-based

selection procedure in terms of reduction of the number of

particles to simulate and degradation of the IPS collision risk

estimate can be evaluated in each run through the following

quantity

gain :=

original number of particles

number of selected particles

risk estimate with all particles

risk estimate with the selected particles

.

The overall gain over the 10 runs of the IPS algorithm can

be computed through the same formula applied to average

quantities.

Increasing values of the threshold (0.01, 0.015, 0.02,

0.025, 0.03, and 0.035) have been considered in our ex-

periments. Due to space limitations, we report here only

the more representative results obtained when the threshold

is equal to 0.02, 0.025 and 0.03 (see Tables III, IV and

V). As expected, as the threshold increases, the number of

selected particles decreases. This has the beneficial effect

of reducing the computational effort in the IPS algorithm,

but may lead to an excessive impoverishment of the set of

initial particles and cause the collision risk estimate to be

zero (i.e., no particle reaches the final level 8). In view of

this consideration, the threshold value 0.03 (and, hence, also

0.035) can be considered too large since the collision risk

estimate is zero in 6 runs over 10 (more than 50%). The

speed-up factor for the threshold values smaller than 0.03

can be estimated by re-scaling the overall gain factor with

the fraction of runs that correspond to a nonzero estimated

risk. The larger effective overall gain is the speed-up factor,

which turns out to be 15.3 (= 25.5×6/10) and corresponds

to the threshold value 0.025.

This result looks promising, especially since the param-

eters entering cA(t0, tf ) have not been tuned to the model

adopted in the IPS algorithm, which may further improve

the speed-up factor. On the other hand, the obtained speed-

up factor does not account for the time needed to compute

the complexity measure cA(t0, tf ). In this respect, it is

worth noting that the time needed to compute cA(t0, tf ) is

independent of the length of the time horizon [0, T ] and

of the complexity of the model for the IPS simulations.

Also, it scales linearly with the number of aircraft present

in the airspace. The computation of cA(t0, tf ) can in fact

be parallelized by estimating in isolation the contribution

of each single aircraft. Aircraft with a zero contribution to

cA(t0, tf ) can be identified based on their relative position

and velocity with respect to aircraft A. All these aspects play

a role in the practical application of the approach.

V. CONCLUSIONS

In this paper, we have proposed an importance sampling

approach to collision risk estimation by combining the IPS

algorithm in [4] with the complexity assessment method in

[20]. Though the performance of the approach has been

tested only in a quite preliminary study, the results look

promising. Further investigation is needed in the following

directions: i) tuning of the prediction model used for com-

plexity evaluation; and ii) assessment of the computational

requirements of an efficient, possibly parallelized, implemen-

tation of the complexity evaluation procedure.
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